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Analytic Formulation for
Kinematics, Statics, and Shape
Restoration of Multibackbone
Continuum Robots Via Elliptic
Integrals
This paper presents a novel and unified analytic formulation for kinematics, statics, and
shape restoration of multiple-backbone continuum robots. These robots achieve actuation
redundancy by independently pulling and pushing three backbones to carry out a bending
motion of two-degrees-of-freedom (DoF). A solution framework based on constraints of
geometric compatibility and static equilibrium is derived using elliptic integrals. This
framework allows the investigation of the effects of different external loads and actuation
redundancy resolutions on the shape variations in these continuum robots. The simulation
and experimental validation results show that these continuum robots bend into an exact
circular shape for one particular actuation resolution. This provides a proof to the ubiq-
uitously accepted circular-shape assumption in deriving kinematics for continuum robots.
The shape variations due to various actuation redundancy resolutions are also investi-
gated. The simulation results show that these continuum robots have the ability to redis-
tribute loads among their backbones without introducing significant shape variations. A
strategy for partially restoring the shape of the externally loaded continuum robots is
proposed. The simulation results show that either the tip orientation or the tip position
can be successfully restored. �DOI: 10.1115/1.4000519�
Introduction
Continuum robots �a term coined in Ref. �1�� have been the

ubject of extensive research due to their potential use in a wide
ange of applications �2–6�. Unlike articulated designs of snake-
ike robots, continuum robots substitute articulated spines with
exible members �often called backbones�. These members may
e elastomers �2�, springs �7,8�, bellows �4,5�, flexures �9�, or
exible beams �10–12�. Use of these flexible members presents
arious advantages in terms of reduced weight, obstacle avoid-
nce, flexibility, safe interaction with unstructured environments,
olerance for geometric variations in grasped objects, and so on.

Continuum robots have a great potential for a variety of medi-
al applications since they provide a safe and soft interaction with
he human anatomy due to their inherent flexibility. Suzumori et
l. �13� fabricated a flexible actuator driven by an electropneu-
atic system at various diameters as catheter tips, robotic hands,

nd snakelike manipulators. Haga et al. �14� fabricated continuum
atheters using shape memory alloy �SMA� coils and etched SMA
lates for actuation. Dario et al. �15� fabricated a steerable end
ffector for knee arthroscopy using four extensible SMA wires,
hile Asari et al. �16� used pneumatically actuated bellows to

abricate continuum robots for endoscopy and colonoscopy. The
esign of Ref. �7� using wire-actuated flexible spring for con-
inuum robots was adapted for medical applications by Breedveld
nd Hirose �8� and Patronik et al. �17�. Breedveld and Hirose �8�
esigned a dexterous endoperiscope while Patronik et al. �17� re-
ently developed the HeartLander robot for the minimally inva-
ive therapy delivery to the surface of a beating heart. Peirs et al.
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�9� designed a surgical robot using a wire-actuated NiTi tube
equipped with flexure joints as a flexible backbone. In addition,
continuum robots have been investigated for use as steerable can-
nulas for image-guided drug delivery, biopsy, and brachytherapy
�18–21�.

Recently, Simaan et al. �11� presented a new type of continuum
robot using multiple flexible backbones with a push-pull actua-
tion. This design is a modification of the designs that use a single
flexible backbone actuated by wires �22–24�. Figure 1�c� shows a
prototype developed for Minimally Invasive Surgery �MIS� of the
throat and the upper airways �25�.

This type of continuum robot consists of several disks and four
superelastic NiTi tubes as its backbones. As shown in Figs.
1�a�–1�c� and 2�a�–2�c�, one primary backbone is centrally lo-
cated and is glued to all the disks. Three identical secondary back-
bones are equidistant from each other and from the primary back-
bone. The secondary backbones are only attached to the end disk
and can slide in appropriately toleranced holes in the spacer disks
and in the base disk. Two consecutive disks form a subsegment of
the robot. Each secondary backbone is actuated in a push-pull
mode. A 2-DoF bending motion of the continuum robot is
achieved through a simultaneous independent actuation of three
secondary backbones �actuation redundancy�.

In order to fully understand the characteristics of this type of
continuum robot, the following topics need to be addressed.

• Kinematic and static modeling: given the desired orientation
of the end disk, find the actuation lengths of the secondary
backbones, as well as obtain the internal load distribution
within the robot structure.

• Stiffness modeling: given an external wrench acting on the
end disk, find the variation in its position and orientation.

Among the aforementioned examples of continuum robots,

Refs. �22–24� presented kinematics, manipulability, control, and
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ompliance analysis for cable-actuated continuum robots with one
exible backbone. In these works, it was assumed that each flex-

ble segment bends into a circular shape. To address the issue of a
ircular bending assumption, Li and Rhan �26� provided a numeri-
al solution for the nonlinear elasticity equations governing the
hape of a planar cable-actuated continuum robot in addition to
resenting modeling errors. However, these results do not apply
ere due to the structural differences.

This paper presents an analytic formulation for kinematics, stat-
cs, and shape restoration for this type of continuum robot. The
ontributions include:

• A novel and unified analytic modeling framework is formu-
lated for continuum robots with multiple flexible backbones.
This framework solves kinematics, statics, and stiffness of
the entire continuum robot via elliptic integrals.

• The modeling framework is used to investigate the effects of
different actuation redundancy resolutions on shape varia-
tions of the multibackbone continuum robot. A method for
actuating the backbones in order to partially restore the
shape of an externally loaded continuum robot is presented.

The approach taken in this paper is as follows: elliptic integrals
re used to express the backbones’ deflected shapes within a sub-
egment of the continuum robot; static equilibrium is formulated
uch that both the kinematics problem and the stiffness problem
an be solved within the same framework; results for the distal
ubsegment are propagated to adjacent subsegments; the results

ig. 1 Continuum robots with actuation redundancy: „a… a
7.5 mm one, „b… a �4.2 mm one, and „c… a two-segment

obot

Fig. 2 Kinematics nomenclature with th

straight robot, and „c… the distal subsegment

11006-2 / Vol. 2, FEBRUARY 2010
for both the actuation redundancy resolutions and the shape res-
toration are then obtained for the entire robot.

Although finite element methods could also be used to solve
these problems, elliptic integrals are chosen for two major advan-
tages: �i� the formulation and the related partial derivatives are
obtained analytically, which allows a fast convergence; this im-
plies the possibility of extending the presented results for future
real-time applications �e.g., online shape restoration and actuation
compensation�; and �ii� the circular bending shape of the robot in
one particular actuation mode is analytically proven, while the
shape can only be observed to numerically approach a circular arc
if a finite element method is used.

Section 2 summarizes coordinate systems and modeling as-
sumptions. Using elliptic integrals, Sec. 3 presents a unified kine-
static formulation framework for solving kinematics, statics, and
shape restoration. Section 4 presents solutions for kinematics and
statics of the continuum robot under different actuation modes as
well as validates an approximate model through simulations and
experiments. Section 5 presents solutions of shape restoration and
Sec. 6 provides conclusions.

2 Coordinate Systems and Modeling Assumptions

2.1 Coordinate Systems. The following coordinate systems
�shown in Figs. 2�a�–2�c�� are defined to help derive and describe
the kinematics and statics of the continuum robot.

• Base disk coordinate system �BDS� �x̂b , ŷb , ẑb� is attached to
the base disk, whose XY plane is defined to coincide with
the upper surface of the base disk and its origin is at the
center of the base disk. x̂b points from the center of the base
disk to the first secondary backbone while ẑb is normal to
the base disk. The three secondary backbones are numbered
according to the definition of �i.

• Bending plane coordinate system �BPS� �x̂1 , ŷ1 , ẑ1� is de-
fined such that the continuum robot bends in its XZ plane,
with its origin coinciding with the origin of BDS. When the
robot is in a straight configuration, x̂1 is defined by the com-
manded �desired� instantaneous linear velocity of the end
disk.

• End disk coordinate system �EDS� �x̂e , ŷe , ẑe� is obtained
from BPS by a rotation about ŷ1 such that ẑ1 becomes the
backbone tangent at the end disk. The origin of EDS is also
translated to the center of the end disk.

• Gripper coordinate system �GCS� �x̂g , ŷg , ẑg� is attached to
an imaginary gripper affixed to the end disk. x̂g points from
the center of the end disk to the first secondary backbone
and ẑg is normal to the end disk. GCS is obtained by a
right-handed rotation about ẑe.

• Subsegment coordinate system �SPS� �x̂s
�t� , ŷs

�t� , ẑs
�t�� �t

efinition of � for „a… a bent robot, „b… a
e d
Transactions of the ASME
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=1,2 , . . . ,n, numbering first from the distal end� is defined
to facilitate solving the kinematics and statics for each sub-
segment. Its XY plane is aligned with the robot bending
plane, while its YZ plane is centered at the corresponding
spacer disk of the subsegment. �x̂s

�1� , ŷs
�1� , ẑs

�1�� is shown in
Fig. 2�c� for the distal subsegment.

2.2 Modeling Assumptions. The following modeling as-
umptions are made.

• The superelastic material NiTi is assumed to have linear and
isotropic relations between stain and stress �27� in the pre-
sented robot. The backbones behave like Euler–Bernoulli
beams.

• The robot is under static equilibrium.
• According to Fig. 3, gravity is ignored in the analysis, since

the gravitational potential energy is less than 0.014% of the
elastic deformation energy for a small continuum robot. This
plot was generated for a vertically placed robot using nu-
merical values from Table 1. Its shape is assumed circular
�density of NiTi is 6.2 g /cm3, each disk weighs 0.32 g�.

• The robot disks are thin and rigid. Friction between the
backbones and the disks is neglected.

• The primary and the secondary backbones are always per-
pendicular to the base, the spacer, and the end disks. The
perpendicularity of the backbones with respect to the spacer
disks will be validated later in Sec. 4.1 where results for
adjacent subsegments are obtained.

Kinestatic Formulation
This section introduces a unified formulation framework.
ithin one subsegment made up of four elastic beams and two

isks, there are constraints for the static equilibrium of the robot
isks, as well as constraints for the geometric compatibility be-
ween the disks and the backbones. Formulation of these two sets
f constraints will be used in later sections to solve for kinematics,
tatics, and shape restoration of the robot.

As shown in Fig. 2�a�, three secondary backbones are actuated
n a push-pull mode to bend the continuum robot to a desired tip
ngle �specified by �L� in a desired bending plane �specified by ��.
n order to solve the kinematics and statics for the entire robot,
nalysis was first applied to the distal subsegment of the robot, as

Fig. 3 Gravitational energy over the elastic energy ratio

Table 1 Numerical values of the robot variables

sp
�1�=30 mm r=3 mm �=15 deg Ep=Es=62 GPa

�1�=30 deg dop=doi=0.889 mm dip=dii=0.762 mm
ournal of Mechanisms and Robotics
shown in Fig. 2�c�. Results for the distal �first� subsegment were
then propagated to adjacent subsegments to form the solution for
the entire robot.

An implicit assumption adopted here is that all of the back-
bones bend in a planar manner: the primary backbone bends in the
bending plane while the secondary backbones bend in planes par-
allel to the bending plane. Solutions obtained in Sec. 4.1 will
validate this assumption. This assumption eventually holds be-
cause in addition to neglecting the gravity the external wrench is
assumed in the bending plane.

3.1 Static Equilibrium Constraints. The analysis for each
subsegment involves four backbones and two disk planes
�B1

�t�B2
�t�B3

�t� and G1
�t�G2

�t�G3
�t��. Figure 2�c� shows the first subseg-

ment, while Fig. 4 shows two consecutive subsegments. For the
tth subsegment, there is a force fp

�t� and a moment mp
�t� acting on

the primary backbone at point Gp
�t� as well as force fi

�t� and mo-
ment mi

�t� acting on the ith secondary backbone at point Gi
�t� by

disk G1
�t�G2

�t�G3
�t�. For the first �distal� subsegment, the robot disk

G1
�1�G2

�1�G3
�1� could also be subject to an external force fe and a

moment me.
Referring to Fig. 2�c�, static equilibrium of the end disk

G1
�1�G2

�1�G3
�1� in the first subsegment gives

cs
�1� = � �

i=1

3

�− fi
�1�� + �− fp

�1�� + fe

�
i=1

3

�− mi
�1� + Gp

�1�Gi
�1� � �− fi

�1��� + �− mp
�1�� + me

	 = 0

�1�

where Gp
�1�Gi

�1� is the vector from point Gp
�1� to Gi

�1�.
Equation �1� states the static equilibrium of the end disk, which

is glued to all of the backbones. In contrast, a spacer disk is only
glued to the primary backbone while the secondary backbones can
slide in its holes.

Referring to the side view of Fig. 4, the spacer disk with
�x̂s

�t−1� , ŷs
�t−1� , ẑs

�t−1�� is under static equilibrium. −f j
�t� and −m j

�t� are
the force and moment exerted on the disk by the backbones in the
subsegment t, while f j

�t−1� and m̃ j
�t−1� are the force and moment

exerted on the disk by the backbones in the subsegment t−1.
Since the secondary backbone can slide in the direction of x̂s

�t−1�,
�t� �t−1�

Fig. 4 Static equilibrium of a spacer disk
−fi and fi need to balance each other in this direction. In

FEBRUARY 2010, Vol. 2 / 011006-3
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ddition, if −fi
�t� counteracts fi

�t−1� �i=1,2 ,3�, −fp
�t� will also coun-

eract fp
�t−1�. Otherwise the force balance in the direction of x̂s

�t−1�

ill not hold. Hence, the static equilibrium constraints for the
pacer disk are formulated as follows:

cs
�t� = �

− f j
�t� · x̂s

�t−1� + f j
�t−1� · x̂s

�t−1�, j = 1,2,3,p


�
i=1

3

�− fi
�t�� + �− fp

�t�� + �
i=1

3

�fi
�t−1�� + fp

�t−1�� · ŷs
�t−1�

�
i=1

3 
 − mi
�t� + Gp

�t�Gi
�t� � �− fi

�t��

+ m̃i
�t−1� + Gp

�t−1�Gi
�t−1� � fi

�t� � − mp
�t� + m̃p

�t−1� 	 = 0

�2�

here t=2,3 , . . . ,n. In the equilibrium, f j
�t−1� and m j

�t−1� are trans-
ated from Gj

�t−1� to Bj
�t−1�, f j

�t−1� remains the same, and m̃ j
�t−1�

m j
�t−1�+Bj

�t�Gj
�t�

� f j
�t−1�. The second row indicates the force bal-

nce in the direction of ŷs
�t−1� and the third row indicates the mo-

ent balance.
Please note that fp

�t�, mp
�t�, fi

�t�, mi
�t�, x̂s

�t�, ŷs
�t�, and ẑs

�t� �t
1,2 , . . . ,n� are different vectors for the n subsegments in the

obot. They have different forms when expressed in different co-
rdinates. For the manipulations such as those in Eqs. �1� and �2�,
hese vectors need to be expressed in one consistent coordinate
ystem. According to the planar bending assumption mentioned
efore, f j

�t� and m j
�t� assume the following form in �x̂s

�t� , ŷs
�t� , ẑs

�t��,
ith f j

�t�
�0:

f j
�t� = � f j

�t� cos � j
�t� f j

�t� sin � j
�t� 0 �T �3�

m j
�t� = �0 0 mj

�t� �T �4�

here f j
�t� is the amplitude and � j

�t� is the angle indicating the force
irection.

Since only the planar bending problem of a thin beam has a
losed-form expression, fe and me assume the following forms in
x̂s

�1� , ŷs
�1� , ẑs

�1��:

fe = � fex fey 0 �T and me = �0 0 me �T �5�

3.2 Geometric Compatibility Constraints. Besides the stat-
cs equilibrium constraints formulated in Eqs. �1� and �2�, there
lso exist geometry compatibility constraints. According to Eq. �3�
rom Ref. �28� or a similar derivation in Refs. �29–32�, the differ-
ntial equation governing the planar shape of the primary back-
one and the ith secondary backbone can be written as in Eq. �6�
j=1,2 ,3 , p�. The equation is written in �x̂s

�t� , ŷs
�t� , ẑs

�t�� and the
inus sign comes from the downward deflection, as shown in

�t�

ig. 5 Deformed primary backbone of the tth subsegment as a
esult of force fp

„t… and moment mp
„t…
igs. 2�c� and 5. �L
sj

is the deflection angle at the distal tip of the

11006-4 / Vol. 2, FEBRUARY 2010
backbones in the tth subsegment. Integrating Eq. �6� along the
backbones leads to Eqs. �7�–�9�

ds =�EjIj

2

− d�

�aj
�t� − f j

�t� cos�� − � j
�t��

�6�

where aj
�t�= �mj

�t��2 / �2EjIj�+ f j
�t� cos��L

sj
�t� −� j

�t��



0

Lsj
�t�

ds =�EjIj

2
I1j

�t� �7�

where I1j
�t� � 


0

�Lsj
�t�

− d�

�aj
�t� − f j

�t� cos�� − � j
�t��



0

Lsj
�t�

cos �ds =�EjIj

2
Intcj

�t� �8�



0

Lsj
�t�

sin �ds =�EjIj

2
Intsj

�t� �9�

where Intcj
�t� � 


0

�Lsj
�t�

− cos �d�

�aj
�t� − f j

�t� cos�� − � j
�t��

and Intsj
�t� � 


0

�Lsj
�t�

− sin �d�

�aj
�t� − f j

�t� cos�� − � j
�t��

as well as �0
Lsj

�t�
cos �ds= �Bj

�t�Gj
�t�� �x and �0

Lsj
�t�

sin �ds= �Bj
�t�Gj

�t�� �y
while �x and �y stand for the X and the Y coordinates.

According to Fig. 2�c�, since the disk G1
�t�G2

�t�G3
�t� is rigid and is

perpendicular to all backbones, the value of �L
sj
�t� and the geomet-

ric compatibility constraints are given in Eqs. �10� and �11�, re-
spectively

�Lsj
�t� = − ��t�, j = 1,2,3,p �10�

�Bp
�t�Bi

�t� + Bi
�t�Gi

�t���x,y = �Bp
�t�Gp

�t� + Gp
�t�Gi

�t���x,y �11�

where Bp
�t�Bi

�t�, Bi
�t�Gi

�t�, Bp
�t�Gp

�t�, and Gp
�t�Gi

�t� are all vectors in
�x̂s

�t� , ŷs
�t� , ẑs

�t��. The X and Y components are the only active con-
straints because the primary and secondary backbones bend in
parallel planes.

The geometric compatibility constraints of Eq. �11� can be re-
written as below, with details in Appendix A

cc
�t� = 0 =�

�EpIp

2
Intcp

�t� −�E1I1

2
Intc1

�t� − r sin ��t� cos �1

�EpIp

2
Intsp

�t� −�E1I1

2
Ints1

�t� − r cos �1�cos ��t� − 1�

�EpIp

2
Intcp

�t� −�E2I2

2
Intc2

�t� − r sin ��t� cos �2

�EpIp

2
Intsp

�t� −�E2I2

2
Ints2

�t� − r cos �2�cos ��t� − 1�

�EpIp

2
Intcp

�t� −�E3I3

2
Intc3

�t� − r sin ��t� cos �3

�EpIp

2
Intsp

�t� −�E3I3

2
Ints3

�t� − r cos �3�cos ��t� − 1�

	
�12�

If f j
�t�=0, the integrals of I1j

�t�, Intcj
�t�, and Intsj

�t� can be directly de-

rived from Eqs. �7�–�9�, using Eq. �10�, j=1,2 ,3 , p

Transactions of the ASME
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I1j
�t� = �2EjIj�

�t�/�mj
�t�� �13�

Intcj
�t� = �2EjIj sin ��t�/�mj

�t�� �14�

Intsj
�t� = �2EjIj�cos ��t� − 1�/�mj

�t�� �15�

f f j
�t�

�0, the integrals of I1j
�t�, Intcj

�t�, and Intsj
�t� can be analytically

xpressed using elliptic integrals. Derivation details are listed in
ppendix B with results summarized below

Intcj
�t� = cos � j

�t�Icj
�t� + sin � j

�t�Isj
�t� �16�

Intsj
�t� = sin � j

�t�Icj
�t� − cos � j

�t�Isj
�t� �17�

here I1j
�t� and Icj

�t� are listed in Table 2 and

Isj
�t� =

2

f j
�t�
 �mj

�t��
�2EjIj

− �aj
�t� − f j

�t� cos � j
�t�� �18�

here aj
�t�= �mj

�t��2 / �2EjIj�+ f j
�t� cos���t�+� j

�t��, which is rewritten
rom aj

�t� in Eq. �6� by using Eq. �10�.
In Table 2, F�z ,k� and E�z ,k� are the incomplete elliptic inte-

rals of the first kind and the second kind, respectively. They are
efined as the following:

F�z,k� =

0

z
d�

�1 − k2 sin2 �
�19�

E�z,k� =

0

z

�1 − k2 sin2 �d� �20�

esults of Eqs. �25�–�28� are directly based on the equations of
89.00, 289.03, 293.07, 331.01, 290.00, 290.04, 291.00, 291.03,
15.02, and 318.02 from Ref. �33�. In Table 2, the expressions for

1j
�t� and Icj

�t� are listed for four different scenarios because the afore-
entioned equations have their valid input value ranges.

Kinematics
The continuum robot’s kinematics can be presented more con-

eniently by using a configuration variable �, as defined in the
omenclature. Its instantaneous direct kinematics from the con-
guration space � to the task space x, and the instantaneous

nverse kinematics from the configuration space � to the joint

pace q are then given by

ournal of Mechanisms and Robotics
ẋ = Jx��̇ �21�

q̇ = Jq��̇ �22�

where both Jx� and Jq� depend on the actual shape of the back-
bones of the continuum robot.

4.1 Actuation Redundancy Resolution. With the analysis
formulated in Sec. 3 the inverse kinematics problem of bending
the distal subsegment to a specific angle ��1� under different ac-
tuation modes can be written as a constrained optimization prob-
lem

xa
�1� = arg min��f123p − fuser�TW�f123p − fuser�� �23�

subject to:��cs
�1�

cc
�1� � = 0

�EpIp/2I1p
�1� − Lsp

�1� = 0
� �24�

where xa
�t��R12�1

= �f1
�t� f2

�t� f3
�t� fp

�t� �1
�t� �2

�t� �3
�t� �p

�t� m1
�t� m2

�t� m3
�t� mp

�t��T and
f123p
�t� = �f1

�t� f2
�t� f3

�t� fp
�t��T. f j

�t�, � j
�t�, and mj

�t� are from Eqs. �3� and
�4�. The first two sets of constraints are defined in Eqs. �1� and
�12�, while the third set of constraints states the length of the
primary backbone equals its predetermined value.

In Eq. �23�, fuser= �f1_user f2_user f3_user fp_user�T is a user speci-
fied target value for the backbone loads while W is a weight
matrix.

The constrained minimization problem in Eq. �23� can be
treated by seeking the solutions of its Karush–Kuhn–Tucker
�KKT� equations, as described in Ref. �34�. The KKT equations of
this optimization problem are solved using sequential quadratic
programming �SQP� as detailed in Refs. �34–36�. The actual
implementation uses MATLAB 2008A

®’s optimization toolbox. Since
the formulation of the KKT equations involves the partial deriva-
tives of the constraints in Eq. �24�, the analytical expressions of
these partial derivatives are derived, with some details presented
in Appendix C.

Actuation mode 1. Minimal force on the primary backbone. The
minimization problem of Eq. �23� is solved for fuser
= �0 0 0 0�T and W=diag�0,0 ,0 ,1�. Numerical values of the
structure of the continuum robot are from the Nomenclature. Re-
sults are from Table 1 as well as plotted in Figs. 6 and 7. Com-
putation was conducted on a 2.4 GHz duo core laptop with an
average convergence time of 95–120 ms. Figure 7 registers and
overlays the theoretic results to an image of an actuated subseg-
ment under a microscope �shown in Fig. 15�. The predicted shapes
of the backbones fit the actual shape very well �the maximal dis-
crepancy between the actual shape and the predicted shape is 0.09
mm�. Hypothetical circular arcs are also drawn in dashed lines to
show the shape deviation between the actual backbones and cir-
cular arcs in Figs. 6 and 7.

From the results in Table 3, the primary backbone is subject to
negligible force �fp

�1�=0.000�10−7N�. According to the
Bernoulli–Euler beam theory, a beam with a pure-moment load
will resemble a purely circular arc. The obtained loading condi-
tion that converges to a pure-moment scenario suggests that the
primary backbone bends into a perfectly circular shape.

With results obtained for the distal �first� subsegment, the shape
of the remaining subsegments �from the second subsegment to the
nth subsegment� now can be obtained sequentially by solving
��xa

�t��T ��t��T for the tth subsegment from the following nonlinear

equations:
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here xa
�t� is defined in Eq. �23� �t=2,3 , . . . ,n� and cs

�t� and cc
�t� are

efined in Eqs. �2� and �12�, respectively.
For a robot with the same subsegment length �identical Lsp

�t� for
ll the subsegments�, results for the tth subsegment �t
2,3 , . . . ,n� solved from Eq. �29� are identical to the results of

he distal �first� subsegment

xa
�t� = xa

�1�, t = 2,3, . . . ,n �30�
hen the following relations hold:

Table 2 Integration res
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Table 3 Results for the actuation mode 1

nit: N Unit: rad Unit: mN m Unit: mm

f1
�1�=12.144 �1

�1�=−0.2618 m1
�1�=−28.888 Ls1

�1�=28.396
f2

�1�=8.890 �2
�1�=2.8798 m2

�1�=−0.009 Ls2
�1�=31.291

f3
�1�=3.254 �3

�1�=2.8798 m3
�1�=−10.483 Ls3

�1�=30.452
fp

�1�=0.000 �p
�1�=0.000 mp

�1�=−15.269 Lsp
�1�=30.000
ults using elliptic integrals

0�� j
�t�	
���t�+� j

�t�

I1j
�t�=I1+���t�+� j

�t�−
 ,aj
�t� , f j

�t��+I1+�
−� j
�t� ,aj

�t� , f j
�t��

Icj
�t�=−Ic+���t�+� j

�t�−
 ,aj
�t� , f j

�t��−Ic+�
−� j
�t� ,aj

�t� , f j
�t��

−
	� j
�t����t�+� j

�t��0

I1j
�t�=I1+���t�+� j

�t�+
 ,aj
�t� , f j

�t��−I1+�
+� j
�t� ,aj

�t� , f j
�t��

Icj
�t�=Ic+�
+� j

�t� ,aj
�t� , f j

�t��−Ic+�
+��t�+� j
�t� ,aj

�t� , f j
�t��

�zp+ = arcsin�p�1 − cos z�
a + p

�za− = arcsin��a + p��1 − cos z�
2�a − p cos z�

�25�

�a � p�

�p � �a�� � �26�

�27�

2 sin z

a − p cos z �28�
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Fig. 6 The actual shape and circular arcs of one subsegment

in actuation mode 1
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Li = nLsi
�1� �31�

�1�

ig. 7 The calculated shape „solid lines… and circular arc
dashed lines… overlaid over the actual shape of one subseg-
ent in actuation mode 1
�0 − �L = n� �32�

Simulation results are listed in Table 4 as well as plotted in Fig.

ournal of Mechanisms and Robotics
qi = Li − L = nLsi
�1� − L �33�


i = fi
�n� · x̂s

�n�, i = 1,2,3 �34�

where �L, qi, 
i, and so on, are defined in the Nomenclature.
This phenomenon can be qualitatively verified according to Fig.

4: If the length of two adjacent subsegments is identical, the ith
subsegment and the �i−1�th subsegment are symmetric with re-
spect to the XY plane of �x̂s

�t−1� , ŷs
�t−1� , ẑs

�t−1�� in the absence of
external disturbances. Hence, the values of xa

�t� for these two sub-
segments should be the same. This symmetry also validates the
assumption that spacer disks are perpendicular to the secondary
backbones. If the tangent to the secondary backbones is not per-
pendicular to the spacer disk, this symmetry cannot hold.

The shapes for all of the backbones for the entire robot are now
solved. The obtained results validate the assumption of planar
bending patterns in Sec. 3.

Please note that in this actuation mode the shape of the primary
backbone is exactly circular. A closed-form instantaneous direct
kinematics from the configuration space � to the task space x can

be derived, as in Ref. �37�
Jx� = �
L cos �

��L − �0�cos �L − sin �L + 1

��L − �0�2 − L
sin ��sin �L − 1�

�L − �0

− L sin �
��L − �0�cos �L − sin �L + 1

��L − �0�2 − L
cos ��sin �L − 1�

�L − �0

L
��L − �0�sin �L + cos �L

��L − �0�2 0

− sin � cos � cos �L

− cos � − sin � cos �L

0 − 1 + sin �L

	 �35�
he exact inverse kinematics from the configuration space � to
he joint space q is shown in Eq. �33�. However, there is not a
losed-form expression for Jq�.

Actuation mode 2. Distributed loads on all the backbones. It
as shown in Ref. �38� that the use of multiple flexible backbones

ould allow improved distribution of load among the backbones
ia proper actuation redundancy resolutions. This property will be
xplored here. One possible formulation of this load redistribution
roblem could be the same as the minimization problem in Eq.
23� for fuser= �5 5 5 5�T and W=diag�1 / �EsIs�, 1 / �EsIs�,
/ �EsIs�, 1 / �EpIp��. Larger values in fuser lead to smaller compres-
ive forces, since the compressive forces are defined negative in
x̂s

�t� , ŷs
�t� , ẑs

�t��. However, values in fuser should not be too large
therwise the pulling force on one backbone can exceed the
trength of the backbone or the strength of the backbone-to-end-
isk connection. W takes the bending stiffness of each backbone
nto account.

Table 4 Results for the actuation mode 2

nit: N Unit: rad Unit: mN m Unit: mm

f1
�1�=13.016 �1

�1�=−0.2618 m1
�1�=−29.680 Ls1

�1�=28.361
f2

�1�=8.120 �2
�1�=2.8798 m2

�1�=−1.595 Ls2
�1�=31.236

f3
�1�=2.456 �3

�1�=2.8798 m3
�1�=−11.681 Ls3

�1�=30.408
fp

�1�=2.440 �p
�1�=2.8798 mp

�1�=−11.958 Lsp
�1�=30.000
8 for the same structure defined by Table 1. Figure 8 also draws
the shape of the subsegment under actuation mode 1.

As shown in Fig. 8�a�, the end disk is retracted in the x̂s
�1�

direction with the orientation remaining the same in actuation
mode 2. The end disk retraction is about 0.03 mm or 0.01% of the
subsegment length.

The rest of the subsegments can be solved using Eq. �29� to
form the kinematics for actuation mode 2.

From the obtained results, the structural characteristics of this
type of continuum robot can be concluded: loads on the back-
bones can be redistributed by fine actuation of the secondary
backbones. The position variation in the tip is truly negligible and
the orientation will remain the same.

In this actuation mode, although the exact shape can be ob-
tained, neither the instantaneous inverse kinematics nor the instan-
taneous direct kinematics has a closed-form expression. Although
load distributions for the two actuation modes are very different,
the shape discrepancy between them is quite small. An approxi-
mate model is derived and validated through experiments in Sec.
4.2.

Results in Tables 3 and 4 can be qualitatively justified through
Fig. 9, which shows the distal subsegment subject to no external
disturbance. Since the constraint conditions at the two disks in
Fig. 9 are symmetric �at both disks, backbones are perpendicular
to the disks and all are in static equilibrium�, there should be a
central plane, to which the shape and loading conditions of the
backbones are symmetric. The forces exerted on the backbones by

�1� �1� �1�
the robot disk G1 G2 G3 would only have components in the

FEBRUARY 2010, Vol. 2 / 011006-7
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irection of x̂c. If there were Y components in these forces, the
ther robot disk in Fig. 9 would generate identical Y components
ue to the symmetry. Since there is no external force to balance
hem, the Y component cannot exist. Hence, all of the forces will
e in the direction of x̂c or −x̂c, as seen in Tables 3 and 4, where

j
�1� values are either identical or offset by 
. Furthermore, m2

�1�

alues in Tables 3 and 4 are small, which indicates the bending
hape of the next secondary backbone, which is generated mainly
y the compressing force f2

�1�.

ig. 8 Calculated shapes of the last subsegment under differ-
nt actuation modes: insets „a… and „b… provide enlarged side
iews

ig. 9 Diagram for qualitative justification of the simulation

esults

11006-8 / Vol. 2, FEBRUARY 2010
4.2 An Approximate Kinematic Model and Its Experimen-
tal Validation. When these continuum robots are implemented as
distal dexterity enablers, a formulation of the inverse kinematics
from the configuration space � to the joint space q for fast cal-
culation is required to facilitate telemanipulation and the robot
control �6,39�. Based on the fact proved in Sec. 4.1 that the shape
of the continuum robot is circular under the actuation mode 1, an
approximate formulation of the inverse kinematics is derived, also
available in Refs. �11,22,24�

Li = L + qi = L + �i��L − �0� �36�

�i � r cos��i�, i = 1,2,3 �37�
This approximate model is verified by a continuum robot and its
actuation unit, as shown in Figs. 10�a�–10�c�. The diameter of this
robot is 7.5 mm. Each secondary backbone is actuated in a push-
pull mode by the actuation unit. The linear slider and the encoder
at the motor shafts allow a positioning accuracy of 0.025 mm.

The robot was actuated by rods, which were glued to the sec-
ondary backbones. These actuation rods were driven by lead
screws in the actuation unit. Actuation length qi is calculated us-
ing the approximate model, Eq. �36�. A series of pictures of the
robot shown in Figs. 10�a�–10�c� was taken while the robot was
bent to different angles. These pictures were transformed into gray
scale and edges were detected using Canny masks �40�. Then a
third order polynomial was fitted to each bending shape of the
robot to parameterize the shape �37�.

Figure 11 shows the actual shape of the primary backbone com-
pared with a circular shape, when the actual end effector angle is
set equal to: �L=70 deg, �L=40 deg, and �L=15 deg. To quan-
titatively estimate how close the actual bending shape is to a cir-
cular shape, the actual tip position is calculated by an integral
along the actual primary backbone shape. The results show that
the robot tip position variation is smaller than �0.45 mm.

When actuation commands were issued according to Eq. �36�,
the actual �L was larger than the desired value �less bending�. A
series of experiments were conducted. The actual �L was extracted
from pictures similar to the ones shown in Figs. 10�a�–10�c�. The
actual versus the desired values of �L were plotted in Fig. 12. A
linear regression was fitted to these experimental results and the

result is given in Eq. �38�, where �̄L is the desired end effector

Fig. 10 A �7.5 mm continuum robot with its actual bending
shape under configurations of „a… �L=60 deg,�=0 deg; „b… �L
=15 deg,�=0 deg, and „c… a close-up view of one spacer disk
value, �=1.169 and �Lc=15.21 deg.
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�̄L = ��L − �Lc �38�

he appearance of �Lc is due to defining the straight configuration
s �L=
 /2. Based on the experimental results, Eq. �36� needs to
e corrected as follows:

Li = L + qi = L + �i����L − �c� − �0� �39�
quation �36� is from the approximate kinematic model based on

he assumption that all of the backbones are circular. Equation
39� is from Eq. �36� based on experimental corrections. In order
o compare the theoretic results with the experimental results,
heoretic results of q solved from Sec. 4.1 are plotted in Fig. 13,
ogether with q values calculated from Eq. �39�. From Fig. 13,
here is still some discrepancy between the theoretical results and
he experimental results. This can be due to the manufacturing and
ssembling accuracy, compliance of the actuation unit, material
ncertainties, local bending within the holes in the spacer disks,
ystem friction, and so on.

Shape Restoration
When an external wrench is exerted at the tip of the continuum

obot, the structure is deformed, which involves variations in both
he tip orientation and the tip position. The deflection can be quan-
ified and the robot can be actuated to partially restore its original
hape.

The external force fe and moment me can be precisely esti-
ated according to Ref. �37�. However, they are expressed in

x̂b , ŷb , ẑb� instead of in �x̂s
�1� , ŷs

�1� , ẑs
�1��. Before they can be substi-

uted into Eq. �1�, they need to be transformed into �x̂s
�1� , ŷs

�1� , ẑs
�1��.

his transformation is unknown because with fe and me applied,

ig. 11 Bending shape along the primary backbone of the
ontinuum robot

¯
Fig. 12 Actual �L value versus desired �L value

ournal of Mechanisms and Robotics
all the ��t� �t=1,2 ,3 , . . . ,n� could be changed. Hence, calculation
of both the shape restoration and the deflection will involve a
shooting method.

The shooting method starts with the actual shape of the robot
before the external loads fe and me are applied. The steps include
the following. Some entities are also indicated in Fig. 14 for a
clearer explanation.

• Initial values of ��t� �t=1,2 ,3 , . . . ,n� are used to calculate
the transformation from �x̂b , ŷb , ẑb� to �x̂s

�1� , ŷs
�1� , ẑs

�1��.
• The transformed fe and me are now substituted into Eq. �1�

to form the constraint of cs
�1�.

• A new value of ��1� �designated by �̃�1�� is assumed. With
predefined fuser and W, Eq. �23� is solved.

• The remaining subsegments are solved sequentially using
Eq. �29�, updated values of ��t� �designated by �̃�t�� �t
=2,3 , . . . ,n� are obtained.

• �̃�1� is adjusted until the shooting target is reached.

The shooting targets for the computations of the deflection, the
tip position restoration, and the tip orientation restoration are all
different.

Fig. 13 The theoretical results from Sec. 4.1 compared with
the experimentally corrected results in the joint space

Fig. 14 The shooting method is initialized using the local tan-
gents of the subsegments based on the shape of an unloaded

robot

FEBRUARY 2010, Vol. 2 / 011006-9



s
r

F
m

T
�

e
i
t

A
d
H
d

a
i

a
N
n
t
u
s

N

�
�
�

L
L
L
L

0

For the restoration of the tip orientation, the shoot target is
imply the following, which states that the overall bending angle
emains the same:

�0 − �L = �
t=1

n

��t� �40�

or the restoration of the tip position, the shooting target is for-
ulated as follows:

bBp
�n�Gp

�1� = b�Bp
�n�Gp

�1��no load �41�

his target states the position vector from Bp
�n� to Gp

�1� in
x̂b , ŷb , ẑb� remains the same.

For the calculation of the robot’s deflected shape under the
xternal wrench, the shooting target is as shown below, which
ndicates that the length of the ith secondary backbone remains
he same before and after the external load is applied

�
t=1

n

Lsi
�t� = 
�

t=1

n

Lsi
�t��

no load

, i = 1,2,3 �42�

s the aforementioned procedures show, calculations of the shape
eflection or of the shape restoration are independent processes.
ence, shape restoration can be obtained without calculating the
eflected shape.

For demonstration purposes, a one-subsegment robot is actu-
ted and then deformed. The restorations of its tip orientation and
ts tip position are simulated.

As shown in Fig. 15, the subsegment is bent to 30 deg and then
n external force of fe= �0−0.5 0�T in �x̂s

�1� , ŷs
�1� , ẑs

�1�� was applied.
umerical values for the parameters are listed in Table 1. Please
ote that the subsegment is bending upwards in Fig. 15 because
he image from the utilized microscope is flipped. By bending
pwards, the experimental results and the simulation are kept con-
istent.

Table 5 lists all of the calculation results, where �px and �py are

Fig. 15 Experimental setup for validating shape restoration

Table 5 Results for the shape restoration

o load Deflected Orientation restored Position restored

�1�=30 deg ��1�=30.23 deg ��1�=30 deg ��1�=28.81 deg

px=28.618 �px=28.524 �px=28.539 �px=28.619

py =−7.668 �py =−8.013 �py =−7.955 �py =−7.668

s1
�1�=28.361 Ls1

�1�=28.361 Ls1
�1�=28.367 Ls1

�1�=28.438

s2
�1�=31.236 Ls2

�1�=31.236 Ls2
�1�=31.209 Ls2

�1�=31.150

s3
�1�=30.408 Ls3

�1�=30.408 Ls3
�1�=30.402 Ls3

�1�=30.385

sp
�1�=30.000 Lsp

�1�=30.000 Lsp
�1�=30.000 Lsp

�1�=30.000
11006-10 / Vol. 2, FEBRUARY 2010
the XY coordinates of the tip position of the primary backbone.
The units in Table 5 are all millimeters, except in the first row.
Comparing the first and the second column in Table 5 and refer-
ring to Fig. 16�a�, when fe is applied, the subsegment is deflected
downwards with ��1� increased, while Lsi

�1� remains the same. In
Figs. 16�a�–16�c�, the actual defected shape fits the calculation
results well; the maximal discrepancy between the actual deflected
shape and the predicted result is 0.15 mm.

Figure 16�b� plots the shape with the tip orientation restored,
while Fig. 16�c� plots the shape with the tip position restored. The
calculation results are listed in the third and fourth column in
Table 5. Actuating the secondary backbones to these new Lsi

�1�

values will partially restore the robot’s shape. All of the results in
Figs. 16�a�–16�c� and Table 5 were generated under the actuation
mode 2 �mentioned in Sec. 4.1�.

We note that shape can only be partially restored because of
parasitic motions/deflections resulting from external disturbances.
One may define control strategies for compensating for these de-
flections. For example, Ref. �41� considered a recursive linear

Fig. 16 Shape restoration simulation and experiment: „a…
simulated deflected and simulated undeflected shapes overlaid
over an actual externally loaded subsegment, „b… simulation of
the deflected subsegment in „a… with and without tip orientation
restoration, and „c… simulation of the deflected subsegment in
„a… with and without tip position restoration
estimation approach that uses external monitoring of the end disk
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rientation in order to overcome parasitic motions that stem from
he flexibility of the actuation lines. The same approach may be
onsidered for compliant parasitic motions. In a realistic surgical
cenario, these robots are telemanipulated by a surgeon who has
ull view of the surgical field. The user inherently compensates for
he parasitic motions. Results of the preliminary telemanipulation
tudy using this robot were reported in Ref. �42�.

Conclusion
This paper presented an analytic formulation for kinematics,

tatics, and shape restoration of a new type of continuum robot
ith multiple flexible backbones. Although a comprehensive

tudy should also include an analysis of the structural stability
backbone buckling�, with enormous results directly applicable
rom previous studies �e.g., Ref. �43� and example No. 1 from
ef. �44��, this paper chose to focus on deriving the kinestatic and

tiffness properties of the robot via an analytic approach, which
ses elliptic integrals.

Two major problems were studied in this paper. The actuation
edundancy resolution problem of the continuum robots was first
olved. It was shown that the shape of the entire robot is perfectly
ircular when applying one particular actuation redundancy reso-
ution. This provided a proof to the experimentally verified as-
umption that this type of continuum robot bends into a circular
hape, which was used in the authors’ previous studies. In addi-
ion, a closed-form direct kinematics from the configuration space

to the task space x was also obtained. The other actuation
esolution was also solved, showing that the loads on all of the
ackbones can be redistributed without introducing significant
ariation on the robot’s shape. This property reduces the risk of
ackbone buckling and supports further miniaturization of this
obot. Based on these solutions, an approximate model was de-
ived and experimentally validated.

The shape restoration problem was solved and the derived ac-
uation strategies were shown to achieve a partial shape restora-
ion of the robot. Although the deflection could be also quantified
hrough a shooting method, a formulation of this shape restoration
roblem provided an additional advantage that the shape restora-
ion could now be obtained without calculating the actual deflec-
ion. The implementation of this shape restoration algorithm in a
eal-time environment is being considered.
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omenclature
i � index of the secondary backbones, i=1,2 ,3
j � index of all the backbones, j=1,2 ,3 , p
n � number of the subsegments in the continuum

robot
L ,Li � length of the primary and the ith secondary

backbone measured from the base disk to the
end disk

Lsp
�t� ,Lsi

�t�
� length of the primary and the ith secondary

backbone within the tth subsegment,
Li=�t=1

n Lsi
�t� and L=�t=1

n Lsp
�t�

q � q= �q1 q2 q3�T is the actuation lengths of the
secondary backbones and qi=Li−L

r � radius of the pitch circle defining the positions
of the secondary backbones in all the disks

� � division angle of the secondary backbones
along the circumference of the pitch circle, �
=2
 /3

��s� � radius of curvature of the primary backbone
�i�s� � radius of curvature of the ith secondary
backbone
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��s� � the angle between ẑ1 and the tangent to the
primary backbone in the bending plane; ��L�
and ��0� are designated by �L and �0, respec-
tively; �0=
 /2

�i � a right-handed rotation angle about ẑ1 from x̂1
to a line passing through the primary backbone
and the ith secondary backbone at s=0; at a
straight configuration, x̂1 is along the same
direction as the desired instantaneous linear
velocity of the end disk

� � ���1 and �i=�+ �i−1��, i=1,2 ,3; in Figs.
2�a� and 2�b�, �=−
 /12=−15 deg

� � ����L ��T is a two-dimensional vector that
is used to characterize the configuration of the
continuum robot

�i � radial offset from the primary backbone to the
projection of the ith secondary backbone on
the bending plane

� � �= �
1 
2 
3�T is the actuation forces of the
secondary backbones �positive 
i defined as
pushing�

Ep ,Ei � Young’s modulus of the primary and the ith
secondary backbone

Ip , Ii � cross-sectional moments of inertia of the pri-
mary and the ith secondary backbone

1R2 � rotation matrix of frame 2 with respect to
frame 1

dop ,doi
dip ,dii � outer and inner diameters of the primary and

the ith secondary backbone, respectively
Jyx � Jacobian matrix of the mapping ẏ=Jyxẋ where

the dot over the variable represents the time
derivative

ẋ � the twist ẋ�R6�1 of the end disk, defined
with the linear velocity preceding the angular
velocity

Bp
�t� ,Bi

�t�
� starting points of the primary and the ith sec-

ondary backbone within the tth subsegment
Gp

�t� ,Gi
�t�

� ending points of the primary and the ith sec-
ondary backbone within the tth subsegment

�L
sj
�t�

� the angle between x̂s
�t� and the tangent to the

backbone at Gj
�t� point in �x̂s

�t� , ŷs
�t� , ẑs

�t��
��t� � bending angle of the tth �t=1,2 , . . . ,n� subseg-

ment, shown in Fig. 2�c�. its value is assumed
to be positive

fp
�t� , fi

�t� and
mp

�t� ,mi
�t�

� forces and moments acting at the tip of the
primary and the ith secondary backbone by the
robot disks, in the tth subsegment

Appendix A
Equation �11� can be rearranged as the following:

�Bp
�t�Gp

�t� − Bi
�t�Gi

�t���x,y = �Bp
�t�Bi

�t� − Gp
�t�Gi

�t���x,y �A1�

Vectors Bp
�t�Bi

�t� and Gp
�t�Gi

�t� are expressed in �x̂s
�t� , ŷs

�t� , ẑs
�t�� as the

following:

Bp
�t�Bi

�t� = − r�0 cos �i sin �i �T �A2�

Gp
�t�Gi

�t� = − r�sin ��t� cos �i cos ��t� cos �i sin �i �T �A3�
The right hand side of Eq. �A1� becomes
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F

C

A

A
s

H

E

D
�
2
a

A

0

Bp
�t�Bi

�t� − Gp
�t�Gi

�t� = � r sin ��t� cos �i

r cos �i�cos ��t� − 1�
0

	 �A4�

rom Eqs. �8� and �9�

�Bp
�t�Gp

�t� − Bi
�t�Gi

�t���x =�EpIp

2
Intcp

�t� −�EiIi

2
Intci

�t� �A5�

�Bp
�t�Gp

�t� − Bi
�t�Gi

�t���y =�EpIp

2
Intsp

�t� −�EiIi

2
Intsi

�t� �A6�

ombining the above results gives Eq. �12�.

ppendix B
Substituting Eq. �10� into Eqs. �7�–�9�

I1j
�t� � 


0

−��t�
− d�

�aj
�t� − f j

�t� cos�� − � j
�t��

�B1�

Intcj
�t� � 


0

−��t�
− cos �d�

�aj
�t� − f j

�t� cos�� − � j
�t��

�B2�

Intsj
�t� � 


0

−��t�
− sin �d�

�aj
�t� − f j

�t� cos�� − � j
�t��

�B3�

fter change of the variables ��→� j
�t�−��, the above integrals

implify as

I1j
�t� =


�j
�t�

��t�+�j
�t�

d�

�aj
�t� − f j

�t� cos �
�B4�

Intcj
�t� =


�j
�t�

��t�+�j
�t�

cos � j
�t� cos � + sin � j

�t� sin �

�aj
�t� − f j

�t� cos �
d� �B5�

Intsj
�t� =


�j
�t�

��t�+�j
�t�

sin � j
�t� cos � − cos � j

�t� sin �

�aj
�t� − f j

�t� cos �
d� �B6�

ence, the following results are obtained:

Intcj
�t� = cos � j

�t�Icj
�t� + sin � j

�t�Isj
�t� �B7�

Intsj
�t� = sin � j

�t�Icj
�t� − cos � j

�t�Isj
�t� �B8�

Icj
�t� =


�j
�t�

��t�+�j
�t�

cos �d�

�aj
�t� − f j

�t� cos �
�B9�

Isj
�t� =


�j
�t�

��t�+�j
�t�

sin �d�

�aj
�t� − f j

�t� cos �
�B10�

quation �B10� can be directly integrated

Isj
�t� =

2

f j
�t� ��aj

�t� − f j
�t� cos���t� + � j

�t�� − �aj
�t� − f j

�t� cos � j
�t��

�B11�

epending on the range of � j
�t� as listed in Table 2, Eqs. �B4� and

B9� have analytic expressions using the identities of 289.00,
89.03, 293.07, 331.01, 290.00, 290.04, 291.00, 291.03, 315.02,
nd 318.02 from Ref. �33�.

ppendix C

The term

11006-12 / Vol. 2, FEBRUARY 2010
�

�xa
�1�
��cs

�1��T�cc
�1��T�EpIp

2
I1p

�1� − Lsp
�1��T�

involves the partial derivatives of the incomplete elliptic integrals
of the first kind and the second kind, which can be derived from
their definitions

�F

�z
=

1
�1 − k2 sin2�z�

�C1�

�F

�k
=

E�z,k�
k�1 − k2�

−
F�z,k�

k
−

k sin z cos z

�1 − k2��1 − k2 sin2 z
�C2�

�E

�z
= �1 − k2 sin2�z� �C3�

�E

�k
=

E�z,k� − F�z,k�
k

�C4�

Based on the above results, the following could be obtained to
form the derivative matrix:

� Intcj
�1�

� f j
�1� = c�j

�1�
�Icj

�1�

� f j
�1� + s�j

�1�
�Isj

�1�

� f j
�1� �C5�

� Intcj
�1�

�� j
�1� = − s�j

�1�Icj
�1� + c�j

�1�
��cj

�1�

�� j
�1� + c�j

�1�Isj
�1� + s�j

�1�
�Isj

�1�

�� j
�1� �C6�

� Intcj
�1�

�mj
�1� = c�j

�1�
�Icj

�1�

�mj
�1� + s�j

�1�
�Isj

�1�

�mj
�1� �C7�

� Intsj
�1�

� f j
�1� = s�j

�1�
�Icj

�1�

� f j
�1� − c�j

�1�
�Isj

�1�

� f j
�1� �C8�

� Intsj
�1�

�� j
�1� = c�j

�1�Icj
�1� + s�j

�1�
��cj

�1�

�� j
�1� + s�j

�1�Isj
�1� − c�j

�1�
�Isj

�1�

�� j
�1� �C9�

� Intsj
�1�

�mj
�1� = s�j

�1�
�Icj

�1�

�mj
�1� − c�j

�1�
�Isj

�1�

�mj
�1� �C10�

The expression for Icj
�1� is available in Table 2 and its partial de-

rivatives also have four different expression sets depending on the
value of � j

�1�.
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